

A Logical Architecture for Future Avionics

Paul Ravenhill
Director of ATM
Helios Technology

Agenda

- Purpose and structure of OATA
- Operational Concepts
- > Avionics architecture
- Datalink Applications
- Conclusions
- Workshop Invitation

OATA Avionics

- > Study Report:
 - Evolution of operational concepts for 2007, 2011 and 2020
 - Evolution of support avionics
 - Driven by Eurocontrol OCD and Industrial Reality
- Logical Architecture:
 - Based on 2011 Operational Concept
 - Developed in UML
 - 16 modules, 150 classes, 50 diagrams

Operational Concepts

- > 2007 A near-term scenario:
 - Today's control paradigm
 - Existing avionics
 - Initial datalink and air-ground ADS-B applications
- ➤ 2011 A mid-term scenario:
 - More progressive form of flight planning
 - Greater integration of airborne data with the ground systems
 - Use of advanced RNP-RNAV
 - Increased collaborative decision making
- ➤ 2020 A long-term scenario:
 - Trajectory negotiation enables advanced flight planning
 - Common air-ground understanding of entire trajectory
 - ground based planning to minimise conflicts and enable UPT

The Avionics Cluster

Flight Control
Landing Guidance
Flight Guidance

Pilot Display

Terrain Avoidance
Traffic Avoidance
Surveillance Reception

Autonomous Sensors

Flight Manager
PVT Determination
Airborne AIS

Airborne ADD Manager

ADS-C Channel

ADS-B Channel

Mode S Channel
Mode AC Channel

Flight Management

Flight management

8

Flight Control
Landing Guidance
Flight Guidance

Pilot Display

Terrain Avoidance

Traffic Avoidance

Surveillance Reception

Autonomous Sensors

Flight Manager
PVT Determination
Airborne AIS

Airborne ADD Manager

ADS-C Channel

ADS-B Channel

Mode S Channel
Mode AC Channel

Situation Awareness

Situation Awareness

Flight Control
Landing Guidance
Flight Guidance

Pilot Display

Terrain Avoidance
Traffic Avoidance
Surveillance Reception

Autonomous Sensors

Flight Manager
PVT Determination
Airborne AIS

Airborne ADD Manager

ADS-C Channel

ADS-B Channel

Mode S Channel
Mode AC Channel

Provision Of ADD

Provision of ADD

Terrain Avoidance Flight Control Pilot Display Traffic Avoidance Landing Guidance Flight Guidance **Surveillance Reception** Flight Manager **PVT Determination Autonomous Sensors** Airborne AIS **Airborne ADD Manager ADS-C Channel Mode S Channel ADS-B Channel Mode AC Channel** 13

External Interactions

Datalink Applications

- > Control:
 - ACL, ACM, DCL, DSC, D-TAXI and PPD
- > Flight Plan:
 - FLIPCY, FLIPINT
- > Surveillance:
 - Mode S ELS/EHS, Mode AC, ADS-B, ADS-C, CAP, SAP
- > Flight Information:
 - DYNAV, D-ATIS, D-RVR and D-SIGMET

Trajectory Prediction

- Trajectory Prediction (TP) is a key enabler with controller automation
- Ground-based TP accuracy is limited by current representation of flight path:
 - Flight Plan + Tactical Clearances leave room for optimisation
 - The avionics applies airline preferences particularly in terms of cruise speed and vertical rates
- > The aircraft has a better knowledge of intent

Support for Trajectory Prediction

- Datalink Applications:
 - CPDLC enables common understanding of tactical clearances
 - Flight Plan Consistency enabled by FLIPCY and FLIPINT
- Surveillance Applications:
 - Accurate position and velocity information
 - Short term ("selected") intent
 - Long-term intent (as Trajectory Change Points)
- > Still ambiguity in actual intent and extrapolation between TCPs:
 - Current initiative within NUP2 to extent TCP definition.
- Alternate Solution:
 - Develop a language to accurately describe the flight regime
 - Boeing RTE refers to this as Flight Intent

Building a new paradigm

- Once developed Flight Intent could:
 - Provide a formal language to exchange trajectory information
 - ATC Systems, with sufficient knowledge of aircraft performance, could probe safe conflict free trajectories for uplink
 - Avionics could refine trajectory and downlink preferred solution
 - Solution would be a contract between ATC and Aircraft

> Issues:

 Accurate knowledge of trajectory reduces the need for surveillance information.

Conclusions

> OATA:

- A significant contribution to the definition of future ATM
- Provides an underpinning to operational concept development
- Identifies interfaces and interoperability requirements

> OATA Avionics:

- Demonstrates the the increasing integration of avionics with ground systems
- Enables rationalisation of air-ground interactions
- Suggests accurate trajectory knowledge is an important enabler of trajectory negotiation for 2020 concepts

OATA Avionics Workshop

6th/7th October 2005 Centre de Congrès P. Baudis Toulouse, France

Thank You

Comments to:

Paul.Ravenhill@Helios-Tech.Co.UK